A Multiscale Discontinuous Galerkin Method

نویسندگان

  • Pavel B. Bochev
  • Thomas J. R. Hughes
  • Guglielmo Scovazzi
چکیده

We propose a new class of Discontinuous Galerkin (DG) methods based on variational multiscale ideas. Our approach begins with an additive decomposition of the discontinuous finite element space into continuous (coarse) and discontinuous (fine) components. Variational multiscale analysis is used to define an interscale transfer operator that associates coarse and fine scale functions. Composition of this operator with a donor DG method yields a new formulation that combines the advantages of DG methods with the attractive and more efficient computational structure of a continuous Galerkin method. The new class of DG methods is illustrated for a scalar advection-diffusion problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discontinuous Galerkin Multiscale Method for Convection-diffusion Problems

We propose an extension of the discontinuous Galerkin local orthogonal decomposition multiscale method, presented in [14], to convection-diffusion problems with rough, heterogeneous, and highly varying coefficients. The properties of the multiscale method and the discontinuous Galerkin method allows us to better cope with multiscale features as well as interior/boundary layers in the solution. ...

متن کامل

Discontinuous Galerkin multiscale methods for convection dominated problems

We propose an extension of the discontinuous Galerkin multiscale method, presented in [11], to convection dominated problems with rough, heterogeneous, and highly varying coefficients. The properties of the multiscale method and the discontinuous Galerkin method allows us to better cope with multiscale features as well as boundary layers in the solution. In the proposed method the trail and tes...

متن کامل

Discontinuous Galerkin Multiscale Methods for Elliptic Problems

Discontinuous Galerkin Multiscale Methods for Elliptic Problems Daniel Elfverson In this paper a continuous Galerkin multiscale method (CGMM) and a discontinuous Galerkin multiscale method (DGMM) are proposed, both based on the variational multiscale method for solving partial differential equations numerically. The solution is decoupled into a coarse and a fine scale contribution, where the fi...

متن کامل

Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems

We study a multiscale discontinuous Galerkin method introduced in [10] that reduces the computational complexity of the discontinuous Galerkin method, seemingly without adversely affecting the quality of results. For a stabilized variant we are able to obtain the same error estimates for the advection-diffusion equation as for the usual discontinuous Galerkin method. We assess the stability of ...

متن کامل

A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method

Proliferation of degrees-of-freedom has plagued discontinuous Galerkin methodology from its inception over 30 years ago. This paper develops a new computational formulation that combines the advantages of discontinuous Galerkin methods with the data structure of their continuous Galerkin counterparts. The new method uses local, element-wise problems to project a continuous finite element space ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005